Dual Inference for Machine Learning
نویسندگان
چکیده
Recent years have witnessed the rapid development of machine learning in solving artificial intelligence (AI) tasks in many domains, including translation, speech, image, etc. Within these domains, AI tasks are usually not independent. As a specific type of relationship, structural duality does exist between many pairs of AI tasks, such as translation from one language to another vs. its opposite direction, speech recognition vs. speech synthetization, image classification vs. image generation, etc. The importance of such duality has been magnified by some recent studies, which revealed that it can boost the learning of two tasks in the dual form. However, there has been little investigation on how to leverage this invaluable relationship into the inference stage of AI tasks. In this paper, we propose a general framework of dual inference which can take advantage of both existing models from two dual tasks, without re-training, to conduct inference for one individual task. Empirical studies on three pairs of specific dual tasks, including machine translation, sentiment analysis, and image processing have illustrated that dual inference can significantly improve the performance of each of individual tasks.
منابع مشابه
Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models
Latent Gaussian models (LGMs) are widely used in statistics and machine learning. Bayesian inference in non-conjugate LGMs is difficult due to intractable integrals involving the Gaussian prior and non-conjugate likelihoods. Algorithms based on variational Gaussian (VG) approximations are widely employed since they strike a favorable balance between accuracy, generality, speed, and ease of use....
متن کاملA Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...
متن کاملThe Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier
The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملA Tutorial on Dual Decomposition and Lagrangian Relaxation for Inference in Natural Language Processing
Dual decomposition, and more generally Lagrangian relaxation, is a classical method for combinatorial optimization; it has recently been applied to several inference problems in natural language processing (NLP). This tutorial gives an overview of the technique. We describe example algorithms, describe formal guarantees for the method, and describe practical issues in implementing the algorithm...
متن کامل